Saturday, September 14, 2013

The Infra Red spectra of phosphor materials BaSO4 and CaS04 doped with rare earth material Dy. by Prof K L Narayana


Volume 2013, Issue No.9,Dt. 3 September 2013:Time: 10h29m.AM.

The Infra Red spectra of phosphor materials BaSOand  CaS04 doped with rare earth material Dy.

by

Professor Dr Kotcherlakota Lakshmi Narayana,
{Retd. Prof.of Physics, SU, Kolhapur} 17-11-10, Narasimha Ashram,
Official Colony, Maharanipeta.P.O. Visakhapatnam -530002,
Mobile No. 9491902867 and; 9542717723

Key Words: compositions, BaSO4 and CaSO4, Dy dopant,
Gamma irradiation.

A B S T R A C T
                       
               The Infra Red spectra of phosphor materials BaSOand CaS04  doped with rare earth material Dy at different percentages and compositions are obtained, by the author, following the spirit of initial investigations made by Prof. K. R. Rao,  mentioned in his D. Sc. Thesis Madras University made during the years 1919-1924 at Vijayanagaram. In Dy spectrum, emission lines at 475nm, 574nm are most intense. Tb and Dy are most effective activators out of selected six rare-earths and to some extent Sm are good for obtaining the TL spectrum in Ca2Mg(BO3)2.  Dy dopant is essentially trivalent. Glow Peaks in TL glow curves gamma irradiated 6.5E+03R Calcium Magnesium Borate Phosphors with different dopants. The data of emission for Dy rare earth doping phosphors is given explicitly. The Infra Red Spectra reported constitutes a first report of its kind by the author of about 10 Phosphor Solid Samples.



                             

                   Prof  K R Rao D.Sc. (Madras). D.Sc(London) receiving           the IR spectrometer at Andhra University, during the year 1961-1962 when the present author was a J R F in C S I R Scheme.
Refer below.

DETAILS  

          The phosphors investigated, by me, at Shivaji University, Kolhapur - 416004 are enlisted below.


1        1.  BaSO4             : Mn 5% : Dy 0.5%   
2        2.  BaSO4           : Mn 2%: Dy 0.5%
3        3.  Ba x SO4: Mn(1-x)  : Dy    x=0.2
4        4.  Ba x SO4: Mn(1-x)  : Dy    x=0.5
5        5.  Ba x SO4: Mn(1-x)  : Dy    x=0.1
6        6.  Ca x: SO4 (1-x)        : Dy    x=0.2
7        7.  Ca x: SO4 (1-x)        : Dy    x=0.4
8        8.  Ca x: SO4 (1-x)        : Dy    x=0.6
9        9.  Ca x: SO4 (1-x)        : Dy    x=0.8
1       10.           CaSO4             : Dy  100%: 0.5%
      Skip 7 similar to 6 scan and as well 4.

    The phosphor material exhibits the Infra Red Spectra record and the data is reported for the samples listed as sample No. 1, next Nos. 3, 2 with 4 skipped, next Nos.5, 6 and 8 with 7 and 9 skipped and finally 10.

Dy Dopant Rare Earth

    With my Ph. D. student (Late Mr. Dhayagude) at Shivaji University,  I have investigated the rare earth Dy dopant for its Thermoluminescence Characteristics in the matrix of Ca2Mg(BO3)2 lattice in n.m units.

Data                   EARLIER   UNASSIGNED PRESENT(nm)
Oà 6H 15/2              -             339.0
     L1                           364.0
     L2                           416.6
     L3                           461.4
------------------------------------------------------
4F9/2 à 6H15/2           474.9     
   (6H11/2 à 6H15/2 )   479.6  
4F9/2 à 6H15/2                         502.3              
                                                539.0
L4                              557.5
L5                              568.0
L6                              570.0
------------------------------------------------------
4F9/2 à 6H13/2                       -
I4                            574     618.0
L5                             -          -
-------------------------------------------------------
4F9/2 à 6H11/2             657.4     -
            I6                    667.7
----------------------------------------------------
  4F9/2 à 6H9/2                -        742.0
            “                         -        742.9
----------------------------------------------------
Page 185: Ph.D thesis submitted to  Shivaji University,
by  Late Dhayagude under the author in July 1984
   
In Dy spectrum, emission lines at 475nm, 574nm are most intense. Tb and Dy are most effective activators out of selected six rare-earths and to some extent Sm are good for obtaining the TL spectrum in Ca2Mg(BO3)2.  The Dy dopant is essentially trivalent.   

Glow Peaks in TL glow curves gamma irradiated 6.5E+03R Calcium Magnesium Borate Phosphors with different dopants. The data for Dy is as follows:
--------------------------------------------------------------------------------------------------------
Sample Dy    Dopant              Glow Peak Intensities in units of `1E-07
                    Concentration %  150 0C   1800C   2800C   3750C
--------------------------------------------------------------------------------------------------------
D28              0.2                              -              5.7   -       10
D29              0.5                              -              4.0   3.3   9
D30              1.0                             1.5           1.9   1.2   3.0
--------------------------------------------------------------------------------------------------------
    (p.107 reference)   

         
Main feature is most intense peak at 4000C in case, of dopant Dy, in other samples it was less weak. Dy replaces Ca position in Ca2Mg(BO3)2 and gives sensitive phosphors. Dy atomic number is 66 and ionic radius is 1.07Å.  


GLOW PEAKS   



             Fig.F The Emmission spectrum of rare-earths
                          in Ca2Mg(BO3)2.  Photo0764    

        
                          Fig.G TL glow curve 
            after 6E+04 gamma irradiation Photo0765

CONCLUSIONS
    
            The phosphor material exhibits the Infra Red Spectra record and the data is reported for the samples listed as sample No. 1, next Nos. 3, 2 with 4 skipped, next Nos. 5, 6 and 8 with 7 and 9 skipped and finally No.10. Extensive data on Dy doped phosphor materials is reported herein with the object of analyzing importance of it in Thermoluminescence studies.

Special Thanks
                
       I am to thank the Vice-Chancellors of Shivaji University, Kolhapur, 416004 Viz., Barrister P. G. Patil, Shri Kanbarkar and Prof Bhogisayanam who have taken keen interest in my work and academic promotions. I was appointed during A G Pawar  regime and Mrs Ithappe in 1966 on June 1st.


PHOTOS AND DATA



                                Fig.1 IMG_1092 graph 1 

                                      
                           Fig.5  IMG_1099   graph 1

                      Fig.2 IMG_1093 graph 3 and 2 skip 4 

                            
                 Fig. 6 IMG_1098 graph 3 and 2 skip 4   

                          

               Fig.3 IMG_1094  graph 8, 6 and 5 skip 7 similar to 6 


                       Fig. 7 IMG_1095 data of samples 5 6 8 


                    
                            Fig.4 IMG_1096 no 10 graph            
                        

                          


                                Fig.8 IMG_1097  graph 10      

====================================================
    
    ADDENDUM

Special Note: 
                It is unfortunate the work carried out and reported in the D.Sc. Thesis of Madras University, was willfully neglected by the committee of Nobel Prize experts, during Prof K. R. Rao, stay in England in   years 1927-1930, and that led to an unprecedented chaos and injustice willful made against him, who later continued at Andhra University, Visakhapatnam and successful in creating an Internationally famous Research and Investigation Laboratories.

                         Fig E Pages 11 and 12 etc of 
                     Prof. K. R. Rao, D.Sc.Thesis (Madras)  
                   Fig. 3 Thallium Absorption dated 1920 -1924


Infra Red  Research in 1919-1924

     The use of Infra Red phosphors in combination with photographic plates first used by Prof K. R. Rao at his laboratories, were first excited by ultraviolet light, and subsequent demise of the afterglow, the plates were placed in the spectroscopy instruments. Absorption of Infra Red light by the phosphor causes them to emit light in the visible region that was spectroscopically recorded and analyzed by Prof. K. R. Rao.  (Pages 11 and 12 of his D.Sc. Thesis of Madras University gives data on Infra Red and Ultra Violet light.)

              NOTE FROM Prof. K. R. Rao’s D.Sc. Thesis of MADRAS UNIVERSITY:

“Specifically on Absorption in the infra red:

           It was thought it would be possible to explore this region more thoroughly by an automatic device than by making personal observations at different wave lengths, such a device was used in these experiments for recording the Galavanometer deflections. This device consisted of a falling plate camera in which the photographic plate was allowed to rise vertically behind a narrow horizontal slit, on to which the reflected spot from the Galvanometer was directly connected through a series of pulleys to the shaft of a spring motor, used also to drum of the spectrometer. The speed of the motor could be adjusted within wide limits and both the photographic plate and the wave-length drum could be simultaneously started or stopped.
     
             In order to take the incident and transmitted Energy curves, the metal being kept in vacuum and the beam of light allowed to pass through the tube, the incident energy curve was first obtained and then the tube was heated about 8000 C and the transmitted energy curve was seen in the same region. As a result of both visual observation and photographic examination it has been found that the vapour does not show any selective absorption by the non-luminous vapour of the metals. Page 12: Being forbidden by the selection Principle it did not appear in Mohler and Ruark’s experiments at the proper extinction potential and in these experiments remained unabsorbed by the non-luminous vapour. Unlike the metals of Groups I and 1II, the resonance collision is not followed by the emission of the corresponding single line spectrum. The 1.07 volt resonance impact is therefore a peculiar type of collision which results, as pointed out by Ruark, only in the production of a metastable form of Thallium in which the existence of such collisions has not yet been found in the case of the other elements of the Group by they can be easily predicted from the spectroscopic  data.”

DATA THALLIUM ABSORPTION SPECTRUM IN units of Å
Fig.3 of Prof K R Rao D.Sc. Thesis Madras University.
(a)  3775.7; 3519.24; 3382.8; 3261;3220;
(b)  2767.87; 2722; 2580.14
(c)  2852.83;2843.27;2826.16; ↓ ; 2767.87;2722;2710;2580.14;
(d)  2379.59; 2315.93;






Research Students of Prof K R Rao at AU, Visakhapatnam
                   (1932 -1972)

Research Students who worked with Prof. K. R. Rao are to my knowledge are Prof. S. L. N. G. Krishnamachari, Prof. V. R. Rao, Prof. C. Santhamma, later Prof. C. R. K. Murthy, Dr. V. Nagarajan, B. Lakshmi narayana, Dr. Sobhanadhri,   D V G L N and his wife Lalitha, (and score others whose names I don't remember) many of their students and others who obtained their doctorate degrees from him of Andhra University, Visakhapatnam. What strikes me is that Prof. K. R. Rao thoroughly examined and assessed every thesis submitted from his laboratories. 

It was only in 1961 Prof. K. R. Rao obtained a Infra Red Spectometer (See the photo enclosed).

REFERENCE

  1. Sunday, February 27, 2011, Prof. K R Rao On Infra Red Absorption of Thallium Vapour    1920-1924 D. Sc Thesis Madras University, trusciencetrutechnology@blogspot.com, Volume 2011, Issue No.2, Dt.27th February 2011: Time: 20:20:067, On the Infra Red absorption by Thallium Metal Vapour D.Sc. Thesis data and its analysis, The 28th February 1928, POSTUMOUS PUBLICATION,    Prof Kotcherlakota Rangadhama Rao, Andhra Scholar, Vizianagaram Maharaja College, Research Centre of Madras University, Yrs.1920-1924, Andhra Pradesh, India.
  2. Late Nagesh Swanand Dhayagude  M.Sc, July 1984, submitted to Shivaji University, Ph. D Thesis under Dr. K.L.Narayana, “Some Investigations on Thermoluminescence Phenomenon And Other Associated Properties of Certain Rare-Earth Doped Borates”.
=====================================================

Wednesday, September 11, 2013

Rubber under Applied Stress by Narayana. L. Kotcherlakota, Polymers and General Physics Labs, SU, Kolhapur 1991

Volume 2013 Issue No.9, Dt. 11 September 2013 Time: 1h04m. PM.
Investigations on the Relationship of Life Time durability of Rubber under Applied Stress
Narayana. L. Kotcherlakota
Polymers and General Physics Labs, Shivjai University, Kolhapur-416004.
{Original  write up on 20 April 1991 by Narayana. K. L.  signed}
{Retd. Prof.of Physics, SU, Kolhapur} 17-11-10, Narasimha Ashram,
Official Colony, Maharanipeta.P.O. Visakhapatnam -530002,
Mobile No. 9491902867 & 9542717723

Key Words: Styrene Rubber, Nitril Rubber, logarithmic lifetime, with and without Carbon Black.

A B S T R A C T

             Experimental data of lifetimes versus the applied stresses on the Styrene based and the Nitril based Rubbers reported by A. Tager (1978) have been critically examined to establish the correct relationship between lifetime against stress.  The stress applied varies from about 0.5 to 10 kg/mm2.       
                             
  It is found that while Nitrile based Rubber are susceptible to more fracture the styrene based rubber can withstand stress but exhibit a peaked lifetime behavior. This is evident from the calculated formula that logarithmic lifetime = 45.68 exp(-1.608*σ). Deviations from Bartnev and Zhukov equations thus arise.

            From a macromechanical view it is noted that Styrene based rubbers have a different bond formations which is responsible for the peaked durability lifetime of the rubber. Relationship with chemical constitution of Rubber and the structure of the vulcanizate is under investigation. The new formula given envisages however a distinct role of the super-molecular orientations in this type of rubbers and thus seeks to account for the pre-exponential constant 45.68, a characteristic of the material.
                                                                ----------------------------------------
DETAILS
(Dated 20 April 1991 by Narayana. K. L.  signed)
We use here σ and τ as the stress and relaxation time respectively.
1.     For Rubber Buna-N without Carbon Black


     σ       kgf/mm2    0.2     0.6     0.8      0.9     1.2     1.5      1.8     2
log(τ)   secs          5.75   5.2      4.5     4.2     3.8      3.2      2.6     2.1
                                     
                                Fig.1

                    Mean                  Std dev       Minimum      Maximum       N
log(τ)          3.345                   1.2637           1.5                5.5
σ                  1.655                    0.2101         1.3                1.95  
Difference 1.69                     1.4712        -0.45              4.2                10      
Correlation coefficient
Pearson’s    r= 0.9855  One tail- significance =0
Standard error of mean difference =0.4652
T score = 3.6327  with 9 diff … Two tail-significance 0.0055
Valid cases 10: Missing cases 0.

   2 For Buna-Styrene Carbon Black Rubber
σ    (kgf/mm2)             1.3    1.4  1.5    1.6  1.65  1.7  1.75  1.8  1.9  1.95
log(τ) secs                       5.5   4.5  4.25  3.8  3.6    3.4   2.9    2.2  1.8  1.5
Horizontal axis is σ  and Vertical axis is  log(τ)
Buna- Styrene Rubber with Carbon Black fill KLN12 scatter plot is given in                                                 see Fig.2.
Y=a* exp(b*x)   y= 73.32 * exp(-1.909769*x)
Natural Rubber
a.     Crystallize when extended.
                     300kgf/cm2
 Group-I        Polychloroprene  270kgf/cm2
                       Butyl Rubber      200 kgf/cm2
b.     Do not Crystallize when extended    
                 BUTOC  Rubber    ckb    10kgf/cm2
Group-II TYRE 1E                 ckh-u  10kgf/cm2
                  Nitrile                   ckc-30 14kgf/cm2
------------------------------------------------------------

                                                              Fig. 2

For Rubber 0.001 kgf load σ =6.0895E+10 erg.cm-3
i.e. 6.0895E+10 gm.cm2.sec-2.cm-3
erg= dyne.cm  so 6.0895E+10 dyne.cm-2
6.0895E=10 gm.cm-1.sec^-2
6.0895E+07 kg      f= 6.11E+06 mm.sec-2
Stress= load/area = kgf/area = dyne/cm2
Variation of σ = 10 kgf/mm2to  160kgf/mm2
10kgf. mm-2 = 10kgf * 100 cm-2


3 Fitting Exponential

Same as for Fig.2 just repeated

σ  kgf/mm2                1.3  1.4  1.5   1.6  1.65  1.7  1.75  1.8   1.9  1.95
log(τ)  secs               5.5  4.5  4.25 3.8  3.6    3.4  2.9     2.2  1.8  1.5
Page 1
  y=A*exp(b*x)    :    y= 73.32055* exp(-1.905769)*x
  log(τ)   =   45.68091* exp(-1.608991 * σ)
============================================
Dependent Variable
Independent Variables in the model σ
Variable       B              Std.error         t  score      2-tail Sig
Intercept  13.1552       0.601               21.8606         0
σ                     -5.9276      0.361             -16.4198          0
=========================================
Analysis of Variance
Source            SS               DF         MS               F              Prob
Regression    13.9581      1          13.9581    269.6111     0
Residual          0.4141       8           0.0518 
Total              14.3723       9
R-Squared = 0.971
R-Squared adjusted for DF=0.968
τ= τ0 *exp(- α * σ )
log(τ) =7.27 + 1.409 * σ – 2.2522* σ2
log(τ) = 13.1552  - 5.9276 * σ
log(τ)=  log(τ0)   -   α  * σ ; implies   α = 5.9276.
σ = 1.65   log(τ)=3.37466 observed 3.60
σ = 1.8    log(τ)=2.48552 observed 2.2
σ = 1.4    log(τ)=4.85656 observed 4.5
σ = 1.3     log(τ)= 5.44932) observed 5.5
Page 2
 Y= y0* exp(-k*x) with  k=0.9 and dk= 0.01 statpal correlation file kln 112
                Log(τ)    σ
log(τ)         1      -0.9855
                  10       10
                   0          0
        σ      -0.9855       1
10          10
                 0           0
STATPAL 4.0 DESCRIPTIUVE STATISTICS
Statistics for variable log(τ)  
Mean           3.345      Std. dev    1.2637   Std. Error    0.3996
Range            4              Minimum   1.5              Maximum         5.5
        Valid Cases 10:      Missing Cases:    0
Statistics for variable σ
  Mean           1.655      Std. dev    0.2101    Std. Error    0.0664
  Range            0.65      Minimum   1.3         Maximum         1.95
                Valid Cases 10:      Missing Cases:    0
For entire table , chi-square =90 with DF  Significance=0.231
A total of 100 (or 100%) of the cells have expected frequency less than 5.


4    Rubber without Carbon Black (Dt. 20th April 1991).
Horizontal axis        σ                
Vertical  axis       log(τsq)
log(τ)   secs                    5.75        5.2     4.5   4.2     3.8    3.2     2.6       2.1
σ              kgf/mm2          0.2          0.6     0.8    0.9      1.2    1.5     1.8       2
τarcs1   all terms are -999999 (M)
τsq      2.397915   2.28035  2.12132  2.04939  1.94935  1.788854  1.612451   1.449137
d(log(τ)/d(σ)   =   - alpha;
0.80-1.5 =  -7 Horizontal
4.5 -3.20 = 1.3 Vertical
alpha= 1.8571428
dy/dx= m =  - 2.0259
log(τ)= A    -   σ * alpha
log(τ)= -2.0259* σ   +  6.1979 where the last term is log(τ0)
σ = 0.8       log(τ)=4.57718
σ =1.5        log(τ)=3.15905

Depended Variable : ΤSQ       Regression log(τsq)  Vs σ
Independent Variables in the model   :   σ
Variable           B        Std  Error       t – score          2-tail Sig
Intercept      2.5461  0.0305           83.5909          0
           σ          0.5244  0.0241           -21.762            0
Analysis   of Variance
Source                 SS               DF               MS               F                 Prob
Regressio   0.7302                  1                 0.7302                  473.5833    0
Residual     0.0093                  6                 0.0015                 
Total           0.7395                  7




        

                               
                          Data of σ Vs log(τsq) plotted in Fig.4.



5   Without Carbon Black Rubber Buna- N

σ         kgf/mm2          0.2     0.6    0.8    0.9     1.2      1.5     1.8
log(τ) Secs             5.75    5.2    4.5     4       3.8      3.2     2.6
dlog(τ)/d(σ)  = - alpha
0.80 – 1.5   = -0.7   Horizontal
4.5  -  3.20  = 1.3    Vertical
alpha= 1.8571428
log(τ)= A  - σ * alpha
dy/dx=m = -2.0259
log(τ) = alpha * σ  +  log(τ0)
log(τ)= -2.0259 * σ + 6.1979
σ = 0.8        log(τ)= 4.57718
σ = 1.5        log(τ)= 3.15905
                
                                      Fig.5


Dependant Variable   log(τ)
Independent Variable in the model :   σ
Variable           B              Std.Error          t-score        2-tail Sig
Intercept            6.1979  0.0965             64.2105           0
          σ                          -2.0259  0.0764             -26.5277           0
Analysis of Variance
Source             SS                 DF                MS            F               Prob
Regression      10.8968         1        10.8968      703.7199         0
Residual          0.0929           6                  0.0155
Total                        10.9897         7
                R-squarred   = 0.992
                R-squared adjusted  for DF =0.99


6    For Rubber with Carbon Black   BUNA- N

     log(τ)           5.5             4.5                 4.25                 3.8      3.6      3.4       2.9      2.2        1.8     1.5    
     σ                  1.3           1.4        1.5     1.6      1.65     1.7       1.75      1.8      1.9       1.95   
     log(τsq)  2.345207     2.12132     2.061552  1.949358    1.897366 1.843908  
                    1.702938    1.483239 1.34164 1.224744    


     Fig.6


Dependent Variable   :  log(τsq)
Independent  Variables in the model  :  σ
     Variable                 B          Std Error      t  -  score         2-tail Sig
    Intercept              4.5464    0.2234          20.3467             0
                 σ              -1.6612    0.134           -12.3928             0
Analysis of  Variance
Source                       SS        DF          MS                  F               Prob
Regression         1.0962      1          1.0962       153.5812      0
Residual              0.0571     8           0.0071      
Total                    1.1533      9



7        Without Carbon Black Rubber   BUNA-N

σ                     1.3         1.4         1.5          1.6        1.65          1.7         1.75       1.8         1.9         1.95
unspecified     1.3      1.3866    1.4733   1.56       1.6466      1.69     1.7333    1.7766  1.8633    1.95
                              
                          
                       Fig.7


                                  Fig.7


DISCUSSION AND RESULTS ANALYSIS

                        Relaxation behavior of a polymer material obeys the generalized equation of visco-elastic body
                               dσ/dt  =  E*dε/dt  - σ / τ
where σ is stress, ε is strain i.e. uni-axial compression, t is the time, E is the modulus of elasticity  and τr  is relaxation time at temperature T a function of σ .  
                    The dependence of τr on σ and T is given by equation,
                                 τr   = τ0   * exp( ( U0     -  γr * σ ) / (kT)
where U0  and  γr  parameters determining the relaxation properties of the relevant solid body, τ0   is pre-exponential factor, and k is molar gas constant.
Then                           
 log(τ)= log(τ0) + (UO      -  γ r * σ)  /   (kT)
where log(τ0) not a constant of the method depends on strain.
Let  -12 = -12 + ( UO - γ r * σ)/(kT)  then     UO=  γ r* σ
UO r    =   13.2 kcal/mole/a0-23 cm3 = σ ;
                 and   (13.2 erg. cm-3 / 1.4394506E+13) = 9.17016E+10 erg.cm-3
                           i.e. 9.17016E+10 dyne.cm-2.
            
                 The expressions of the curve fittings are given below for the quadratic equations obtained for all the seven sets of polymer data.

log(τ) Vs σ
Fig.1   Y =6.19703-2.02386*X-8.96194E-04*X2 BUNA-N without Carbon black

log(τ) Vs σ
Fig.2    Y =7.27195+1.40828*X-2.25197*X2BUNA-S without Carbon black

Fig.3 same as for Fig.2

log(τsq) Vs σ
Fig.4   Y =2.47878-0.36447*X-0.07052*X2  log(τsq) without Carbon black

log(τ)  Vs σ
Fig.5   Y =5.89653-1.52972*X-0.18034*X2 BUNA-N without Carbon black

log(τ) Vs σ
Fig.6   Y =0.81969+2.98566*X-1.42648*X2   BUNA – N with C parabolic!

unspecified   Vs   σ
Fig.7   Y =0.34247+0.56418*X+0.1302*X2 gives an unusual straight line.


 BUNA-Styrene yields a larger constant value 7.27195 while the other coefficients of X and X2 are very less compared to BUNA-N without Carbon in both cases. A repeat case of log (τ) versus σ in the trial of Fig.6 gives parabolic expression.


ACKNOWLEDGEMENT


I am indebted to the staff of the Chemical Technology Institute in Matunga, Mumbai and as well their associated laboratories of the Polymer Science, visited by me in the years 1991 to 1993, who permitted me to carry out the investigations at their laboratories and obtain the given results. I stayed at my father’s(Prof K R Rao of AU, Visakhapatnam) student, G. Gurunadham’s (relative of Dr. M. Gourinadha Shastri of Hindu College, Muslipatam) residence, in campus, in IIT Powai, Mumbai.  His children were very cordial to me and served me excellent food and breakfast. Several staff members of Polymer Labs, etc. were very cordial to me there during my stay in Mumbai due to the good will and the God devoted member of staff, and Spectroscopist, G. Gurunadham, of IIT, Powai, Mumbai.