trusciencetrutechnology@blogspot.com
Volume
2013 Issue No.4, Dt.8 April 2013 Time: 8h22m A.M.
THE F18 NUCLEUS
ENERGY LEVELS USING THE SERBER AND ROSENFELD FORCES
[A
COMPARATIVE STUDY BASED ON DATA OF THE AUTHOR Ph. D 1964 THESIS.]
by
Dr.
Kotcherlakota Lakshmi Narayana,
{Retd.
Prof. of Phys, SU, Kolhapur}
17-11-10, Narasimha Ashram, Official Colony,
Maharanipeta.
P. O, Visakhapatnam
-530002.
Mobile
No: +919491902867 and No.9594717723
ABSTRACT
The levels of the F18 nucleus
are solved and the data listed with a comparative study of the level positions
by using the Serber and Rosenfeld forces.
The levels
1d25/2,
1d23/2, 1d5/21d3/2, 1d5/2 2s1/2, 1d3/22s1/2 and 2s21/2 were considered for the energy
calculations.
INTRODUCTION
The author has made
elaborate calculations during the years 1961 to 1964 using the seven figure log
tables and the Swedish FACIT calculator. The modern soft-wares used now to get the
details of the wave functions and the associated energy level spacing of F18
nucleus. In O 18 the two extra neutrons are presumably in the d5/2 with the d25/2neutron
configuration has allowed states j=0, 2, 4. The ground state is a 0+ state and
2+ and 4+ are found to be at 2 and 3.5MeV respectively. Talmi (1964) states in
the energy calculations in the Nuclear Shell Model states
that no consistency of the configuration assignment. It is interesting that
Talmi (ref no.13 and p.125)
asserts that two-body interactions in jj coupling of O18, O19
and as well as O20 seem to be unchanged in the central potential. Energy
level spacing of F18
nucleus offers a totally different aspect of the two nucleon interaction even
in the case of central force consideration as evident of the calculations made
by the author given in his Ph. D. Thesis. The desired constant with j=5/2 and
n=2 particles yield the values a=(1/28)*(5*V2+23*V4), b=(1/14)*(V4-V2) and c=
1/6*V0 –(1/42)*(10*V2-3*V4) where b= 0.11 MeV. Here V0, V2 and V4 are the interaction
energies of j=0, j=2 and j=4 respectively. (Talmi.
I, p.125)
DIGRESSION
The force between two nucleons is not
just a central force and involves a contribution from the relative direction of
spins and the radius vector between the neutron and the proton. The ground
level of deuteron has nuclear angular momentum I=1 and is a 3S1
state which is unstable by the order of about 50KeV. In central force
potentials the potential energy is greater than the binding energy of deuteron
and the radial wave function of deuteron decreases as exp(-r/ro ) where r0 is
the range of the fore. The value of Vo used in the thesis (Ph. D kln AU 1964)
is just –Uo of Evans book on the Atomic Nuleus(1955) on page 316 and b is just
r0
1.
Yukawa Well : Vo*exp(-r/r0)/ (r/r0).
2.
Exponential well: Vo *exp(-r/r0)
3.
Square well: =Vo
for r< r0
=0 for r>r0
4.
Gaussian well: Vo * exp(-r^2/r0^2)
5.
Highly singulated potential: Vo *exp(-r^2/r0^2) / (r/r0)^2
6.
Hard core potential: Vo* r0^2 * exp(-r^2/r0^2)
Where
Vo is potential depth, effective range of nuclear force is r0.
The Serber force represented usually as ½ *(1+PM) where PM
is the Majorana exchange operator with +1(attractive) for even angular
momenta and -1 for the odd (repulsive). My
Ph. D thesis 1964 of Andhra
University presents the
projection operators involving these nuclear exchange operators P w, PM,
PH and P B respectively for the Wigner, Majorana,
Heisenberg and Bartlett forces. Serber force is therefore zero for odd states.
The phase shift in
the 3P state depends critically on the exchange character of the n-p force. It is zro for Serber forces
and has opposite sign for the pure Wigner and Majorana forces. (Theoretical
Nuclear Physics, Blatt J. N and Weisskopf V.F 1952 p. 613. It is very interesting to note that there also exist anti-Serber forces in nature.
The energy levels for both the Serber Force and the Rosenfeld force now have been explicitly calculated and data is presented herewith.
The energy levels for both the Serber Force and the Rosenfeld force now have been explicitly calculated and data is presented herewith.
DATA
Both the Serber force and the Rosenfeld Force data of F18 is
presented below giving the details of Energy level the Isotopic and Angular
Momentum details.
Serber
|
Force
|
||||||||||||||||||
9.6262
|
T=1
|
j=2
|
|||||||||||||||||
-0.0654*1d2
5/2
|
0.9847*1d2 3/2
|
0.1117*1d 5/2
1d 3/2
|
-.0458*1d 5/2
2s 1/2
|
-.1072*1d 3/2
2s 1/2
|
|||||||||||||||
8.5572
|
T=0
|
j=1
|
|||||||||||||||||
.1495*1d2 5/2
|
0.0652*1d 5/2
1d 3/2
|
0.0278*2s 2
1/2
|
0.9564*1d2 3/2
|
-.2408*1d 3/2
2s 1/2
|
|||||||||||||||
8.062
|
T=1
|
j=0
|
|||||||||||||||||
0.86121*1d2
5/2
|
0.308*1d2 3/2
|
0.4044*2s 2
1/2
|
|||||||||||||||||
7.5921
|
T=0
|
j=3
|
|||||||||||||||||
0.1086*1d2 5/2
|
0.953*1d2 3/2
|
-.2797*1d 5/2
1d 3/2
|
0.0423*1d 5/2
2s 1/2
|
||||||||||||||||
5.954
|
T=1
|
j=1
|
|||||||||||||||||
1.0*1d3/22s1/2
|
|||||||||||||||||||
5.8099
|
T=1
|
j=2
|
|||||||||||||||||
-.0437*1d2 5/2
|
0.0566*1d2 3/2
|
0.3007*1d 5/2
1d 3/2
|
-.1762*1d 5/2
2s 1/2
|
0.9346*1d 3/2
2s 1/2
|
|||||||||||||||
5.083
|
T=1
|
j=1
|
|||||||||||||||||
1.0*1d5/21d3/2
|
|||||||||||||||||||
5.042
|
T=0
|
j=2
|
|||||||||||||||||
1d5/2
|
0.1095*1d2 3/2
|
1d 3/2 2s 1/2
|
|||||||||||||||||
4.5284
|
T=1
|
j=2
|
|||||||||||||||||
-.2143*1d2 5/2
|
0.4627*1d 5/2
1d 3/2
|
-0.9228*1d 5/2
1d 3/2
|
-.1698*1d 5/2
2s 1/2
|
0.2482*1d 3/2
2s 1/2
|
|||||||||||||||
3.5134
|
T=0
|
j=1
|
|||||||||||||||||
-.366*1d2 5/2
|
1d23/2
|
0.0791*2s 2
1/2
|
-.1645*1d2 3/2
|
-.7866*1d 3/2
2s 1/2
|
|||||||||||||||
3.4639
|
T=0
|
j=3
|
|||||||||||||||||
0.124*1d2 5/2
|
-0.2953*1d 5/2
1d 3/2
|
-.9354*1d 5/2
1d 3/2
|
0.15*1d 5/2
2s 1/2
|
||||||||||||||||
2.8128
|
T=1
|
j=4
|
|||||||||||||||||
-.7113*1d2 5/2
|
1.422*1d 5/2
2s 1/2
|
||||||||||||||||||
2.3722
|
T=0
|
j=2
|
|||||||||||||||||
0.8104*1d5/21d3/2
|
-.5215*1d 5/2
2s 1/2
|
0.2671*1d 3/2
2s 1/2
|
|||||||||||||||||
1.528
|
T=0
|
j=4
|
|||||||||||||||||
1.0* 1d5/21d3/2
|
|||||||||||||||||||
0.0631
|
T=0
|
j=1
|
|||||||||||||||||
-.419*1d2 5/2
|
-.0036*1d2 3/2
|
.2338*2s 2 1/2
|
0.1551*1d2 3/2
|
0.4785*1d 3/2
2s 1/2
|
|||||||||||||||
-0.1998
|
T=1
|
j=2
|
|||||||||||||||||
-.6609*1d2 5/2
|
0.0421*1d 5/2
1d 3/2
|
0.7431*1d 5/2
2s 1/2
|
0.0959*1d 3/2
2s 1/2
|
||||||||||||||||
-0.5418
|
T=0
|
j=3
|
|||||||||||||||||
.7303*1d2 5/2
|
-.0518*1d2 3/2
|
.0039*1d 5/2
1d 3/2
|
-.6811*1d 5/2
2s 1/2
|
||||||||||||||||
-1.2851
|
T=1
|
j=4
|
|||||||||||||||||
0.71131*1d2
5/2
|
1.422*1d 5/2
2s 1/2
|
||||||||||||||||||
-1.637
|
T=0
|
j=2
|
|||||||||||||||||
-.4272*1d5/21d3/2
|
-.8379*1d 5/2
2s 1/2
|
-.3396*1d 3/2
2s 1/2
|
|||||||||||||||||
-2.0144
|
T=0
|
j=1
|
|||||||||||||||||
0.5149*1d2 5/2
|
.0571*1d2 3/2
|
-.8446*2s 2
1/2
|
-.0842*1d2 3/2
|
-0.0947*1d 3/2
2s 1/2
|
|||||||||||||||
-2.1
|
T=1
|
j=0
|
|||||||||||||||||
-0.4076*1d2
5/2
|
0.123*1d2 3/2
|
.9114*2s 2 1/2
|
|||||||||||||||||
-3.1697
|
T=1
|
j=2
|
|||||||||||||||||
.7149*1d2 5/2
|
1d2 3/2
|
-0.2091*1d 5/2
1d 3/2
|
0.6211*1d 5/2
2s 1/2
|
.2104*1d 3/2
2s 1/2
|
|||||||||||||||
-3.555
|
T=0
|
j=5
|
|||||||||||||||||
1.0*1d2 5/2
|
|||||||||||||||||||
-4.0842
|
T=0
|
j=3
|
|||||||||||||||||
0.6629*1d2 5/2
|
0.0437*1d2 3/2
|
-.2165*1d 5/2
1d 3/2
|
-.7154*1d 5/2
2s 1/2
|
||||||||||||||||
-7.174
|
T=0
|
j=1
|
|||||||||||||||||
0.6651*1d2 5/2
|
0.5607*1d 5/2
1d 3/2
|
0.4675*2s 2
1/2
|
-.1561*1d2 3/2
|
-.0172*1d 3/2
2s 1/2
|
|||||||||||||||
-7.92
|
T=1
|
j=0
|
|||||||||||||||||
.8612*1d2 5/2
|
.308*1d2 3/2
|
0.4044*2s 2
1/2
|
|||||||||||||||||
ROSENFELD
|
FORCE
|
||||||||||||||||||
10.5788
|
T=1
|
j=2
|
|||||||||||||||||
.052*1d2 5/2
|
‘0.9985*1d2 3/2
|
-.0051*1d 5/2 1d 3/2
|
.0069*1d 5/2 2s 1/2
|
0.0144*1d 3/2 2s 1/2
|
|||||||||||||||
9.8609
|
T=0
|
j=1
|
|||||||||||||||||
-.3093*1d2 5/2
|
0.0154*1d 5/2 1d 3/2
|
-0.0257*2s 2 1/2
|
‘-.9301*1d2 3/2
|
0.1957*1d 3/2 2s 1/2
|
|||||||||||||||
7.8727
|
T=0
|
j=3
|
|||||||||||||||||
0.3175*1d2 5/2
|
0.8345*1d2 3/2
|
-.449*1d 5/2 1d 3/2
|
0.034*1d 5/2 2s 1/2
|
||||||||||||||||
6.9967
|
T=1
|
j=2
|
|||||||||||||||||
.0071*1d2 5/2
|
.0141*1d2 3/2
|
.0479*1d 5/2 1d 3/2
|
.0546*1d 5/2 2s 1/2
|
.9172*1d 3/2 2s 1/2
|
|||||||||||||||
6.689
|
T=1
|
j=1
|
|||||||||||||||||
1.0*1d 5/2 1d 3/2
|
|||||||||||||||||||
6.686
|
T=1
|
j=1
|
|||||||||||||||||
1.0*1d 3/2 2s 1/2
|
|||||||||||||||||||
6.0968
|
T=1
|
j=2
|
|||||||||||||||||
-.1386*1d2 5/2
|
-.0016*1d2 3/2
|
-.9892*1d 5/2 1d 3/2
|
-.0016*1d 5/2 2s 1/2
|
0.0469*1d 3/2 2s 1/2
|
|||||||||||||||
5.4228
|
T=1
|
j=4
|
|||||||||||||||||
-.217*1d2 5/2
|
0.976*1d 5/2 1d 3/2
|
||||||||||||||||||
4.9648
|
T=0
|
j=2
|
|||||||||||||||||
-.4163*1d2 5/2
|
-.1283*1d2 3/2
|
.9001*2s 2 1/2
|
|||||||||||||||||
3.3474
|
T=0
|
j=1
|
|||||||||||||||||
-.5145*1d2 5/2
|
.4941*1d 5/2 1d 3/2
|
-.0454*2s 2 1/2
|
0.0335*1d2 3/2
|
-.6986*1d 3/2 2s 1/2
|
|||||||||||||||
2.292
|
T=0
|
j=3
|
|||||||||||||||||
0.0017*1d2 5/2
|
-.4694*1d2 3/2
|
-.8543*1d 5/2 1d 3/2
|
.2234*1d 5/2 2s 1/2
|
||||||||||||||||
2.0383
|
T=0
|
j=2
|
|||||||||||||||||
0.6547*1d2 5/2
|
-.7293*1d2 3/2
|
0.1988*2s 2 1/2
|
|||||||||||||||||
1.3815
|
T=1
|
j=0
|
|||||||||||||||||
-.1192*1d2 5/2
|
-.0021*1d2 3/22
|
0.9929*2s 2 1/2
|
|||||||||||||||||
1.0807
|
T=1
|
j=2
|
|||||||||||||||||
-.1598*1d2 5/2
|
‘0.0024*1d2 3/2
|
.0132*1d 5/2 1d 3/2
|
.9855*1d 5/2 2s 1/2
|
-.0557*1d 3/2 2s 1/2
|
|||||||||||||||
0.4975
|
T=1
|
j=2
|
|||||||||||||||||
0.976*1d2 5/2
|
0.0527*1d2 3/2
|
-0.1377*1d 5/2 1d 3/2
|
0.1605*1d 5/2 2s 1/2
|
.0041*1d 3/2 2s 1/2
|
|||||||||||||||
0.1821
|
T=1
|
j=4
|
|||||||||||||||||
-.976*1d2 5/2
|
-.217*1d 5/2 1d 3/2
|
||||||||||||||||||
0.0679
|
T=1
|
j=0
|
|||||||||||||||||
0.9872*1d2 5/2
|
0.1062*1d2 3/2
|
0.1187*2s 2 1/2
|
|||||||||||||||||
-0.3206
|
T=0
|
j=4
|
|||||||||||||||||
1.0*1d 5/2 1d 3/2
|
|||||||||||||||||||
-1.3134
|
T=0
|
j=3
|
|||||||||||||||||
.6988*1d2 5/2
|
-.21562*1d2 3/2
|
.0325*1d 5/2 1d 3/2
|
-.6671*1d 5/2 2s 1/2
|
||||||||||||||||
-1.6643
|
T=0
|
j=1
|
|||||||||||||||||
-.3852*1d2 5/2
|
-.5341*1d 5/2 1d 3/2
|
0.1329*2s21/2
|
-.2846*1d2 3/2
|
-.6838*1d 3/2 2s 1/2
|
|||||||||||||||
-3.0914
|
T=0
|
J=2
|
|||||||||||||||||
0.631*1d2 5/2
|
0.6721*1d2 3/2
|
0.3876*2s 2 1/2
|
|||||||||||||||||
-3.7155
|
T=0
|
J=1
|
|||||||||||||||||
0.3986*1d2 5/2
|
-.2333*1d 5/2 1d 3/2
|
0.8752*2s 2 1/2
|
.1208*1d2 3/2
|
0.0775*1d 3/2 2s 1/2
|
|||||||||||||||
-5.404
|
T=0
|
J=5
|
|||||||||||||||||
1.0*1d2 5/2
|
|||||||||||||||||||
-6.7113
|
T=0
|
J=3
|
|||||||||||||||||
-.641*1d2 5/2
|
0.1329*1d2 3/2
|
-0.26*1d 5/2 1d 3/2
|
-.7098*1d 5/2 2s 1/2
|
||||||||||||||||
-12.113
|
T=0
|
J=1
|
|||||||||||||||||
-0.5765*1d2 5/2
|
-.6449*1d 5/2 1d 3/2
|
-.4621*2s 2 1/2
|
0.1954*1d2 3/2
|
0.0079*1d 3/2 2s 1/2
|
|||||||||||||||
The energy level with the specified T and J
values and the explicit calculation made by the author of the F 18 nucleus
using both the Serber and the Rosenfeld forces are presented. A detailed
analysis of the corresponding wave functions is worth the effort.
CALCULATED LIST OF ENERGY
LEVELS
The F18 data
of levels are listed for both the Serber and the Rosenfeld Forces below giving
the associated T and j values explicitly. A set of about a total of 26 levels
are presented. Plots B refer to Rosenfeld force and Plots C refer to Serber
force.
No B3
plot since they are individual values.
B3=[6.689 0;
0 6.686]
B4 : plot(x^5-25.2505*x^4+
219.0681*x^3 -749.9132*x^2 +809.5767*x-242.6108,x);
Rosenfeld Force F 18 nucleus 1964 KLN
B9
T=0 J=5 1d25/2 Eig =
-5.404
SERBER FORCE DATA
C1:
plot(x^3+1.951*X^2-64.132*x-133.8162,x);
C2: plot(x^5 -2.9452*x^4 -66.212*x^3
+106.0021*x^2 +428.0445*x -27.416,x);
C3: Eigen values are 5.083 and 5.954 only
two.
No C3 plot since they are individual
values.
C4 : plot(x^5-16.595*x^4 + 59.1912*x^3 + 158.0714*x^2 -773.6768*x -160.3725,x);
C5 : plot(x^3 -5.7777 *x^2 – 0.1747*x + 19.5843,x);
C6 : plot(x^4 - 6.43*
x^3 -22.634* x^2 +97.189*x +58.1947,x);
C7 :
plot(x^2 -1.5277*x – 3.6147,x);
C8 : T=0 J=4 1d5/21d3/2 Eig= 1.528
C9 : T=0
J=5 1d2 5/2 Eig =
-3.555
|
DISCUSSION
Rosenfeld force yields the ground state as T=1 j=0; while the Serber force shifts it to 0.0679 level. The three levels T0 j=1; T=0 j=3; and T=0 j=5; happened to occur sequentially upward above the ground state levels. But the Serber force shifts away the T=1 j=2; level to a very high state at 0.4975. This is fascinating result. Similarly the sixth level of Rosenfeld force shifts the level to 1.3815 level Serber force. The seventh and eighth levels of Rosenfeld force lie down at -3.0914 and -3.7155 of the Serber force. Rosenfeld T=0 j=3; goes up considerably by Serber force at 2.292. The fifteenth, fourteenth and eleven numbered levels of Rosenfeld force fall back to lower levels of Serber force at -1.663, -1.3134 and 0.3206 levels. T=1 j=2; level of the Serber force is slightly higher relative to -1.998 of Rosenfeld force. T=0 j=3; seems to well balanced of the two forces around the level 7.8721 and7.5921 of the Serber and Rosenfeld forces. Similar is the case with the T=0 j=2; but Serber gives lower value 2.0383 while Rosenfeld sets it at 2.3722. This seems to be a nice contrast with the previous levels of T=0 j=3. For T=1 j=1 the Serber force 6.686 gives a very high value relative to the Rosenfeld force at 5.083. Next the T=1 j=0; brings the Serber force 10.963 level to a lower value of Rosenfeld force 8.062. Main conclusion is that the Rosenfeld force sets the levels at slightly lower values compared to the Serber force.
Rosenfeld force yields the ground state as T=1 j=0; while the Serber force shifts it to 0.0679 level. The three levels T0 j=1; T=0 j=3; and T=0 j=5; happened to occur sequentially upward above the ground state levels. But the Serber force shifts away the T=1 j=2; level to a very high state at 0.4975. This is fascinating result. Similarly the sixth level of Rosenfeld force shifts the level to 1.3815 level Serber force. The seventh and eighth levels of Rosenfeld force lie down at -3.0914 and -3.7155 of the Serber force. Rosenfeld T=0 j=3; goes up considerably by Serber force at 2.292. The fifteenth, fourteenth and eleven numbered levels of Rosenfeld force fall back to lower levels of Serber force at -1.663, -1.3134 and 0.3206 levels. T=1 j=2; level of the Serber force is slightly higher relative to -1.998 of Rosenfeld force. T=0 j=3; seems to well balanced of the two forces around the level 7.8721 and7.5921 of the Serber and Rosenfeld forces. Similar is the case with the T=0 j=2; but Serber gives lower value 2.0383 while Rosenfeld sets it at 2.3722. This seems to be a nice contrast with the previous levels of T=0 j=3. For T=1 j=1 the Serber force 6.686 gives a very high value relative to the Rosenfeld force at 5.083. Next the T=1 j=0; brings the Serber force 10.963 level to a lower value of Rosenfeld force 8.062. Main conclusion is that the Rosenfeld force sets the levels at slightly lower values compared to the Serber force.
CONCLUSIONS
The main contents of the paper the
solutions of the energy matrices of F18 nucleus
that have been solved now and presented. The nuclear level characteristic spacing
elaborated. The energy levels for both the Serber Force and the Rosenfeld force now have been explicitly calculated and data is presented herewith.
ACKNOWLEDGMENT
These
matrices forms a part of my Ph. D (Andhra) Thesis during the years 1961-1964 of
Andhra University, Waltair from the
laboratories of Late Prof. K. R. Rao, D.Sc. (Madras), D.Sc. (London) to whom I am deeply indebted. I am greatly
indebted to Late Prof .K. R. Rao D.Sc. (Madras), D.Sc. (London) for enumerating
me on the nature of Nuclear Forces and the Nuclear Spectrum of F 18
nucleus using the Serber and the Rosenfeld forces.
REFERENCES
1. T.
Berggren, T. Erickson, K. L. Narayana,” A single Particle excitable
core model for Li6 nucleus“
Arkiv
Fur Fys (Sweden),
Vol.30, p. 545 , 1965
2. K.
L. Narayana and C. I. Patil, “On the Energy level structure of
the 10B nucleus”,
Acta
Physica Polonica, Vol. B8, No.4, p.559-572, 1977. &
Paper
No.78, Nucl. & Solid State Physics Sympsium, Vol.17-B, Bombay, 1974.
3.
K. L. Narayana, “ Dual core Model for He3 ”,
Current Science, Vol.38, p.487, 1969.
4.
K. L. Narayana, “ Dual Core model for 10B nucleus”,
Shivaji University Journal, Vol.4, No.8,
p.73-75, 1971.
5.
K. L.Narayana, “On the low lying energy levels of O18 nucleus”,
Current Science, Vol.37, p.132, 1968.
6.
K. L.Narayana, “On the low lying even parity levels of F18 nucleus”,
Current Science, Vol.38, p.38-40, Jan 1966.
7. K.
L. Narayana, “The Uranium qudrupole moment based on a dual core
Fissionable Model”,
Current Science, Vol.38, p.261, 1966.
8. K.
L. Narayana, “On The unification of gravitation And the quantum theory”,
(invited
Talk),
Presented at GRG, 8th National Symposium
at Bhavanagar, 1978 &
Shivaji University J., Vol.17. p.13-21.
1977
9.
K. L. Narayana, “ Resonating Magic Cores Model for B10 nucleus”,
Proc. Nucl. & Solid State Physics,
Roorke, Paper No. N-93,1969.
10.
K. L. Narayana, ” On the binding energy of 10B “,
Proc. Nucl. & Solid State Physics,
Madurai, 1970.
11.
K. L. Narayana, “The structure of mass 19 nuclei”,
Proc. Nucl. & Solid State Physics,
Madras, 1968
12.
K. L. Narayana, “ Quantal functional Representation and Estimate
of
Actinides Nuclear Properties”, Nuclear Science Symposium, No.164,
Omni-Shoreham Hotel, Washington D. C.,
Oct-Nov.1, 1986.
13. Talmi .
I, Book on “Selected Topics in Nuclear Spectroscopy”, compiled
B J Verhaar, p.107 and article “on energy
calculations in the Nuclear
Shell Model” p.106-132, 1964 references in the Ph. D
Thesis of the
author 1964 of Andhra University, Waltair.
14. See
references listed in the trusciencetrutechnology@blogspot.com,
Volume 2013 Issue No.3, Dt.23 March 2013
Time:1h08m P.M.
CALCULATIONS ON THE ENERGY LEVELS SPACINGS OF F 18 NUCLEUS
CALCULATIONS ON THE ENERGY LEVELS SPACINGS OF F 18 NUCLEUS
15. J. M. Blatt and V. F.
Weisskopf, p.613 etc., 1958 reprint
16 R. D
Evans, “The Atomic Nucleus”, p.296, Chap.10, p.316-318, 1955
No comments:
Post a Comment