Wednesday, September 11, 2013

Rubber under Applied Stress by Narayana. L. Kotcherlakota, Polymers and General Physics Labs, SU, Kolhapur 1991

Volume 2013 Issue No.9, Dt. 11 September 2013 Time: 1h04m. PM.
Investigations on the Relationship of Life Time durability of Rubber under Applied Stress
Narayana. L. Kotcherlakota
Polymers and General Physics Labs, Shivjai University, Kolhapur-416004.
{Original  write up on 20 April 1991 by Narayana. K. L.  signed}
{Retd. Prof.of Physics, SU, Kolhapur} 17-11-10, Narasimha Ashram,
Official Colony, Maharanipeta.P.O. Visakhapatnam -530002,
Mobile No. 9491902867 & 9542717723

Key Words: Styrene Rubber, Nitril Rubber, logarithmic lifetime, with and without Carbon Black.

A B S T R A C T

             Experimental data of lifetimes versus the applied stresses on the Styrene based and the Nitril based Rubbers reported by A. Tager (1978) have been critically examined to establish the correct relationship between lifetime against stress.  The stress applied varies from about 0.5 to 10 kg/mm2.       
                             
  It is found that while Nitrile based Rubber are susceptible to more fracture the styrene based rubber can withstand stress but exhibit a peaked lifetime behavior. This is evident from the calculated formula that logarithmic lifetime = 45.68 exp(-1.608*σ). Deviations from Bartnev and Zhukov equations thus arise.

            From a macromechanical view it is noted that Styrene based rubbers have a different bond formations which is responsible for the peaked durability lifetime of the rubber. Relationship with chemical constitution of Rubber and the structure of the vulcanizate is under investigation. The new formula given envisages however a distinct role of the super-molecular orientations in this type of rubbers and thus seeks to account for the pre-exponential constant 45.68, a characteristic of the material.
                                                                ----------------------------------------
DETAILS
(Dated 20 April 1991 by Narayana. K. L.  signed)
We use here σ and τ as the stress and relaxation time respectively.
1.     For Rubber Buna-N without Carbon Black


     σ       kgf/mm2    0.2     0.6     0.8      0.9     1.2     1.5      1.8     2
log(τ)   secs          5.75   5.2      4.5     4.2     3.8      3.2      2.6     2.1
                                     
                                Fig.1

                    Mean                  Std dev       Minimum      Maximum       N
log(τ)          3.345                   1.2637           1.5                5.5
σ                  1.655                    0.2101         1.3                1.95  
Difference 1.69                     1.4712        -0.45              4.2                10      
Correlation coefficient
Pearson’s    r= 0.9855  One tail- significance =0
Standard error of mean difference =0.4652
T score = 3.6327  with 9 diff … Two tail-significance 0.0055
Valid cases 10: Missing cases 0.

   2 For Buna-Styrene Carbon Black Rubber
σ    (kgf/mm2)             1.3    1.4  1.5    1.6  1.65  1.7  1.75  1.8  1.9  1.95
log(τ) secs                       5.5   4.5  4.25  3.8  3.6    3.4   2.9    2.2  1.8  1.5
Horizontal axis is σ  and Vertical axis is  log(τ)
Buna- Styrene Rubber with Carbon Black fill KLN12 scatter plot is given in                                                 see Fig.2.
Y=a* exp(b*x)   y= 73.32 * exp(-1.909769*x)
Natural Rubber
a.     Crystallize when extended.
                     300kgf/cm2
 Group-I        Polychloroprene  270kgf/cm2
                       Butyl Rubber      200 kgf/cm2
b.     Do not Crystallize when extended    
                 BUTOC  Rubber    ckb    10kgf/cm2
Group-II TYRE 1E                 ckh-u  10kgf/cm2
                  Nitrile                   ckc-30 14kgf/cm2
------------------------------------------------------------

                                                              Fig. 2

For Rubber 0.001 kgf load σ =6.0895E+10 erg.cm-3
i.e. 6.0895E+10 gm.cm2.sec-2.cm-3
erg= dyne.cm  so 6.0895E+10 dyne.cm-2
6.0895E=10 gm.cm-1.sec^-2
6.0895E+07 kg      f= 6.11E+06 mm.sec-2
Stress= load/area = kgf/area = dyne/cm2
Variation of σ = 10 kgf/mm2to  160kgf/mm2
10kgf. mm-2 = 10kgf * 100 cm-2


3 Fitting Exponential

Same as for Fig.2 just repeated

σ  kgf/mm2                1.3  1.4  1.5   1.6  1.65  1.7  1.75  1.8   1.9  1.95
log(τ)  secs               5.5  4.5  4.25 3.8  3.6    3.4  2.9     2.2  1.8  1.5
Page 1
  y=A*exp(b*x)    :    y= 73.32055* exp(-1.905769)*x
  log(τ)   =   45.68091* exp(-1.608991 * σ)
============================================
Dependent Variable
Independent Variables in the model σ
Variable       B              Std.error         t  score      2-tail Sig
Intercept  13.1552       0.601               21.8606         0
σ                     -5.9276      0.361             -16.4198          0
=========================================
Analysis of Variance
Source            SS               DF         MS               F              Prob
Regression    13.9581      1          13.9581    269.6111     0
Residual          0.4141       8           0.0518 
Total              14.3723       9
R-Squared = 0.971
R-Squared adjusted for DF=0.968
τ= τ0 *exp(- α * σ )
log(τ) =7.27 + 1.409 * σ – 2.2522* σ2
log(τ) = 13.1552  - 5.9276 * σ
log(τ)=  log(τ0)   -   α  * σ ; implies   α = 5.9276.
σ = 1.65   log(τ)=3.37466 observed 3.60
σ = 1.8    log(τ)=2.48552 observed 2.2
σ = 1.4    log(τ)=4.85656 observed 4.5
σ = 1.3     log(τ)= 5.44932) observed 5.5
Page 2
 Y= y0* exp(-k*x) with  k=0.9 and dk= 0.01 statpal correlation file kln 112
                Log(τ)    σ
log(τ)         1      -0.9855
                  10       10
                   0          0
        σ      -0.9855       1
10          10
                 0           0
STATPAL 4.0 DESCRIPTIUVE STATISTICS
Statistics for variable log(τ)  
Mean           3.345      Std. dev    1.2637   Std. Error    0.3996
Range            4              Minimum   1.5              Maximum         5.5
        Valid Cases 10:      Missing Cases:    0
Statistics for variable σ
  Mean           1.655      Std. dev    0.2101    Std. Error    0.0664
  Range            0.65      Minimum   1.3         Maximum         1.95
                Valid Cases 10:      Missing Cases:    0
For entire table , chi-square =90 with DF  Significance=0.231
A total of 100 (or 100%) of the cells have expected frequency less than 5.


4    Rubber without Carbon Black (Dt. 20th April 1991).
Horizontal axis        σ                
Vertical  axis       log(τsq)
log(τ)   secs                    5.75        5.2     4.5   4.2     3.8    3.2     2.6       2.1
σ              kgf/mm2          0.2          0.6     0.8    0.9      1.2    1.5     1.8       2
τarcs1   all terms are -999999 (M)
τsq      2.397915   2.28035  2.12132  2.04939  1.94935  1.788854  1.612451   1.449137
d(log(τ)/d(σ)   =   - alpha;
0.80-1.5 =  -7 Horizontal
4.5 -3.20 = 1.3 Vertical
alpha= 1.8571428
dy/dx= m =  - 2.0259
log(τ)= A    -   σ * alpha
log(τ)= -2.0259* σ   +  6.1979 where the last term is log(τ0)
σ = 0.8       log(τ)=4.57718
σ =1.5        log(τ)=3.15905

Depended Variable : ΤSQ       Regression log(τsq)  Vs σ
Independent Variables in the model   :   σ
Variable           B        Std  Error       t – score          2-tail Sig
Intercept      2.5461  0.0305           83.5909          0
           σ          0.5244  0.0241           -21.762            0
Analysis   of Variance
Source                 SS               DF               MS               F                 Prob
Regressio   0.7302                  1                 0.7302                  473.5833    0
Residual     0.0093                  6                 0.0015                 
Total           0.7395                  7




        

                               
                          Data of σ Vs log(τsq) plotted in Fig.4.



5   Without Carbon Black Rubber Buna- N

σ         kgf/mm2          0.2     0.6    0.8    0.9     1.2      1.5     1.8
log(τ) Secs             5.75    5.2    4.5     4       3.8      3.2     2.6
dlog(τ)/d(σ)  = - alpha
0.80 – 1.5   = -0.7   Horizontal
4.5  -  3.20  = 1.3    Vertical
alpha= 1.8571428
log(τ)= A  - σ * alpha
dy/dx=m = -2.0259
log(τ) = alpha * σ  +  log(τ0)
log(τ)= -2.0259 * σ + 6.1979
σ = 0.8        log(τ)= 4.57718
σ = 1.5        log(τ)= 3.15905
                
                                      Fig.5


Dependant Variable   log(τ)
Independent Variable in the model :   σ
Variable           B              Std.Error          t-score        2-tail Sig
Intercept            6.1979  0.0965             64.2105           0
          σ                          -2.0259  0.0764             -26.5277           0
Analysis of Variance
Source             SS                 DF                MS            F               Prob
Regression      10.8968         1        10.8968      703.7199         0
Residual          0.0929           6                  0.0155
Total                        10.9897         7
                R-squarred   = 0.992
                R-squared adjusted  for DF =0.99


6    For Rubber with Carbon Black   BUNA- N

     log(τ)           5.5             4.5                 4.25                 3.8      3.6      3.4       2.9      2.2        1.8     1.5    
     σ                  1.3           1.4        1.5     1.6      1.65     1.7       1.75      1.8      1.9       1.95   
     log(τsq)  2.345207     2.12132     2.061552  1.949358    1.897366 1.843908  
                    1.702938    1.483239 1.34164 1.224744    


     Fig.6


Dependent Variable   :  log(τsq)
Independent  Variables in the model  :  σ
     Variable                 B          Std Error      t  -  score         2-tail Sig
    Intercept              4.5464    0.2234          20.3467             0
                 σ              -1.6612    0.134           -12.3928             0
Analysis of  Variance
Source                       SS        DF          MS                  F               Prob
Regression         1.0962      1          1.0962       153.5812      0
Residual              0.0571     8           0.0071      
Total                    1.1533      9



7        Without Carbon Black Rubber   BUNA-N

σ                     1.3         1.4         1.5          1.6        1.65          1.7         1.75       1.8         1.9         1.95
unspecified     1.3      1.3866    1.4733   1.56       1.6466      1.69     1.7333    1.7766  1.8633    1.95
                              
                          
                       Fig.7


                                  Fig.7


DISCUSSION AND RESULTS ANALYSIS

                        Relaxation behavior of a polymer material obeys the generalized equation of visco-elastic body
                               dσ/dt  =  E*dε/dt  - σ / τ
where σ is stress, ε is strain i.e. uni-axial compression, t is the time, E is the modulus of elasticity  and τr  is relaxation time at temperature T a function of σ .  
                    The dependence of τr on σ and T is given by equation,
                                 τr   = τ0   * exp( ( U0     -  γr * σ ) / (kT)
where U0  and  γr  parameters determining the relaxation properties of the relevant solid body, τ0   is pre-exponential factor, and k is molar gas constant.
Then                           
 log(τ)= log(τ0) + (UO      -  γ r * σ)  /   (kT)
where log(τ0) not a constant of the method depends on strain.
Let  -12 = -12 + ( UO - γ r * σ)/(kT)  then     UO=  γ r* σ
UO r    =   13.2 kcal/mole/a0-23 cm3 = σ ;
                 and   (13.2 erg. cm-3 / 1.4394506E+13) = 9.17016E+10 erg.cm-3
                           i.e. 9.17016E+10 dyne.cm-2.
            
                 The expressions of the curve fittings are given below for the quadratic equations obtained for all the seven sets of polymer data.

log(τ) Vs σ
Fig.1   Y =6.19703-2.02386*X-8.96194E-04*X2 BUNA-N without Carbon black

log(τ) Vs σ
Fig.2    Y =7.27195+1.40828*X-2.25197*X2BUNA-S without Carbon black

Fig.3 same as for Fig.2

log(τsq) Vs σ
Fig.4   Y =2.47878-0.36447*X-0.07052*X2  log(τsq) without Carbon black

log(τ)  Vs σ
Fig.5   Y =5.89653-1.52972*X-0.18034*X2 BUNA-N without Carbon black

log(τ) Vs σ
Fig.6   Y =0.81969+2.98566*X-1.42648*X2   BUNA – N with C parabolic!

unspecified   Vs   σ
Fig.7   Y =0.34247+0.56418*X+0.1302*X2 gives an unusual straight line.


 BUNA-Styrene yields a larger constant value 7.27195 while the other coefficients of X and X2 are very less compared to BUNA-N without Carbon in both cases. A repeat case of log (τ) versus σ in the trial of Fig.6 gives parabolic expression.


ACKNOWLEDGEMENT


I am indebted to the staff of the Chemical Technology Institute in Matunga, Mumbai and as well their associated laboratories of the Polymer Science, visited by me in the years 1991 to 1993, who permitted me to carry out the investigations at their laboratories and obtain the given results. I stayed at my father’s(Prof K R Rao of AU, Visakhapatnam) student, G. Gurunadham’s (relative of Dr. M. Gourinadha Shastri of Hindu College, Muslipatam) residence, in campus, in IIT Powai, Mumbai.  His children were very cordial to me and served me excellent food and breakfast. Several staff members of Polymer Labs, etc. were very cordial to me there during my stay in Mumbai due to the good will and the God devoted member of staff, and Spectroscopist, G. Gurunadham, of IIT, Powai, Mumbai.

No comments: