Wednesday, January 13, 2016

Anti-fractional integral formalism to bring out New Physics for the Spin ±1/8 to Spin ±31/8 in steps of ±1/8 devoid of integrals:by Prof K. L. Narayana

trusciencetrutechnology@blogspot.com
Volume 2016, Issue No. 1b, Dated: 12 January 2016, Time: 17:54 PM
Indian Science Congress Association
 Mysure PHYSICS Paper 
5 January, 2016 between 3 to 6 PM display.
Professor Dr. Kotcherlakota Lakshmi Narayana,
(Retd. Prof. of Physics, Shivaji University, Kolhapur - 416004)
Res: 17-11-10, Narasimha Ashram, Official Colony,
Maharanipeta. P. O., Visakhapatnam-530002, A.P. 
Mobile: 09491902867.
kotcherlakoa_l_n@hotmail.com
   lakshminarayana.kotcherlakota@gmail.com
---------------------------------------------------------------------------------------------------------
INDIAN SCIENCE CONGRESS ASSOCIATION, 
14 Biresh Guha Street, Kolkata-700017.  
ISCA, MYSURE UNIVERSITY, 2016 January 3 to 7,
Physics Session Paper. Displayed on 5 January 2016 at 
Physics Department between 3 to 6 PM.
Anti-fractional integral formalism to bring out New Physics for the Spin ±1/8 to Spin ±31/8 in steps of ±1/8 devoid of integrals.     
     Professor Dr. Kotcherlakota Lakshmi Narayana,
trusciencetrutechnology@blogspot.com
  {Retd.Prof. of Physics, SU, Kolhapur-416004} 
     17-11-10, Narasimha Ashram, Official Colony,    
                Maharanaipeta. P.O., Visakhapatnam – 530002. AP.
   Mobile: 9491902867;16 July 2014 at 10h15mAM
lakshminarayana.kotcherlakota@gmail.com
=================================================================
     ABSTRACT
            An object of my work is that the Anti-Photon [Ref. Physics Section ISCA 2015, held at Mumbai Univ., Jan 5th] series presents the possibility of higher fractional spins, the formalism and data presented in this paper on Anti-fractional integral formalism specifically brings out the new mathematics for the spin ±1/8 to spin ±31/8 entities. The formalism extension to higher spins is also worked out.  

INDIAN SCIENCE CONGRESS SESSION, PHYSICS SECTION, CRAWFORD HALL, MYSORE, 2016.
==================================================================
Anti-fractional integral formalism to bring out New Physics 
       for the Spin ±1/8 to Spin  ±31/8 in steps of ±1/8th devoid of integrals. 
         Professor Dr. Kotcherlakota Lakshmi Narayana,                {Retd.Prof. of Physics, SU, Kolhapur-416004} 
                                         17-11-10, Narasimha Ashram, Official Colony,                                              
   Maharanaipeta. P.O., Visakhapatnam – 530002. A.P   
Mobile: 9491902867;16 July 2014 at 10h15mAM.
     
PREAMBLE
                 Paper presented in the Indian Science Congress session held at Mysore University, on 5 January 2016, in the Physics Section. Sequel to my paper presented on the 5th January 2015, at University of Mumbai. There the integral Spins were considered and present version for the Mysore University, ISCA session, of year 2016, the Anti-fractional integral formalism that brings out NEW PHYSICS is given.  The possibility of higher spins, specifically the formalism presented in this paper on Anti-fractional integral formalism brings out the new Physics, for the spin ±1/8 to spin ±31/8 entities.

INTRODUCTION  
                   Conceiving an anti-photon is a very bold endeavour by the author [1, 2 and 3]. Having brought out a monograph book December 2013 on this subject matter the author now feels to extend the concept to Anti-fractional integral formalism for higher spins.
 My Presentation
SPINS (±1/8, ±1/4, ±3/8)
Imaginary
 (Sμν –i/8)( Sμν + i/8) = (Sμν)2 +1/8 = S2μν + 1/8=0 
                    Or   S2μν =   - 1/8 --------------(1)
Giving                           
                                    Sμν = ± i/(2√2) ---------------------(2)
Realistic
t2μν  - 1/8 = 0 giving tμν   = ±1/(2√2) -----------(3)
with tμν = i Sμν------------------------(4)
Imaginary
 (Sμν –i/4)(Sμν + i/4) = (Sμν )2 +1/16 =  S2μν  + 1/16=0 
                    Or   S2μν  =   - 1/16  --------------(1a)
Giving                                       
                                    Sμν =  ±  1/4  ---------------------(2a)
Realistic
t2μν  -  1/16 = 0 giving tμν   = ± 1/4 -----------(3a)
with tμν = i Sμν------------------------(4a)
Imaginary
 (Sμν –3i/8)(Sμν + 3i/8) = (Sμν)2 +9/64 =  S2μν  + 9/64=0 
                    Or   S2μν  =   - 9/64   --------------(1b)
Giving                                       
                                    Sμν =  ±  i 3/8   ---------------------(2b)
Realistic
t2μν  -  9/64 = 0 giving tμν   = ± 3/8  -----------(3b)
with tμν = i Sμν------------------------(4b)
SPIN (±5/8, ±3/4,±7/8)
±5/8
 Imaginary
 (Sμν –i5/8)(Sμν + i5/8) = ((Sμν)2 +25/64)  Sμν  =  S3μν  + 25/64 Sμν =0 
                    Or   S3μν  =   -  Sμν 25/64   --------------(5)
Giving                                       
                                    Sμν =  ±  i5/8  ---------------------(6)
Realistic
t2μν = - S2μν   = 25/64 giving tμν   = 5/8 -----------(7)
with tμν = i Sμν------------------------(8)
±3/4
Imaginary
 (Sμν  –  3i/4) Sμν (Sμν + 3i/4) = (Sμν )2 +1/16 =  (S2μν + 9/16) Sμν =0 
                    or   S2μν  =   - 9/16; Sμν = ±i3/4;  --------------(5a)
Giving                                       
                                    Sμν =  ± i3/4  ---------------------(6a)
Realistic
t3μν  - 27/64  = 0 giving tμν   = ± 3/4 -----------(7a)
with tμν = i Sμν------------------------(8a)
±7/8
Imaginary
 (Sμν –7i/8) Sμν (Sμν + 7i/8) = ((Sμν )2 +49/64) Sμν  =  S3μν  + 49/64 Sμν4  =0 
                    Or   S2μν  = - 49/64   --------------(5b)
Giving                                          
                                    Sμν =  ±  i 7/8   ---------------------(6b)
Realistic
                                        tμν   = 7/8;   t2μν= 49/64;   t3μν  =  343/512
with tμν = i Sμν------------------------(8b)
SPIN (±9/8,  ±5/4,  ±11/8)                      
±9/8
Imaginary
Sμν = ±i1/8; Sμν = ±i9/8;
                                      [(S2 μν + 81/64]* (Sμν + 1/64) = (Sμν)4 + 82/64 S2 μν + 81/(64) 2; ---------(5)                                    
(Sμν)4 + 41/32 S2 μν + 81/(64) 2;------------------(6)
Realistic
                            (tμν)4 - 41/32 t2 μν + 81/(64) 2  =0…………….(7)
                               tμν    =   ±9/√64      or  tμν    =   ±1/8;…………(8)     
With tμν = i Sμν  -----------------------(9)
±5/4                       
Imaginary
           [(S2 μν + 25/64]* (Sμν + 1/16) = (Sμν)4 + 26/16 S2 μν + 25/(16) 2; …..(5a)
                                     (Sμν)4 + 13/8 S2 μν + 25/(16) 2  = 0; ………….(6a)
Realistic
                            (tμν)4 – 26/16 t2 μν + 25/(16) 2  =  0…………….(7a)
                               t2μν    =   ±25/8   or  t2μν    =   ±1/8;…………(8a)     
      With t2μν  =  S2 μν -----------------------(9a)
±11/8
Imaginary
   [(S2 μν +121/64]*( S2μν  + 9/64) = (Sμν)4 + 65/32 S2 μν +1089/(64) 2 = 0;-----(5b)     
Realistic
                                              (tμν)4 – 130/64 t2 μν + 1089/(64) 2  =  0---------------(7b)
                          t2μν    =   ±9/64   or  t2μν    =   ±121/64;…………(8b)
   With tμν = i Sμν  -----------------------(9b)
SPIN (±15/8,     ±7/4,   ±13/8)
      ±15/8   
Imaginary
          [(S2 μν + 225/64]* (S2 μν  + 49/64) Sμν   
                   = ((Sμν)4 + 274/64 S2 μν + 225x49/(64) 2 ) Sμν ; …..(5)
                    ((Sμν)4 + 274/64 S2 μν + 11025/(64) 2 ) S μν= 0; …..(6)
Realistic
            (tμν)4 – 274/64 t2 μν + 11025/(64)2 ) t μν =  0…………….(7)
 Imaginary
          [(S2 μν + 49/16]* (S2 μν  + 9/16) Sμν ---------------------(5a) 
                   = ((Sμν)4 + 58/16 S2 μν + 441/256 ) Sμν = 0 ; …..(6a)
Realistic
                 (tμν)4 – 58/16 t2 μν + 441/256) t μν =  0--------------(7a)
Imaginary
                     [(S2 μν + 13/8.13/8]* (S2 μν  + 25/64) Sμν ---------------------(5b) 
                   = ((Sμν)4 + 194/64 S2 μν +169/64. 25/64 ) Sμν = 0 ; ……….(6b)
 Realistic
                     (tμν)4 – 194/64 t2 μν + 169/64. 25/ 64 ) t μν =  0--------------(7b)
SPIN (±19/8, ± 9/4, ±17/8)
±19/8
Imaginary
       (S2 μν + 19*19/64)* (S2 μν  + 11*11/64)* (S2 μν + 9/64)-------------(5)
   ((Sμν)6 + 482/64 S4 μν +4338/4096  S2μν + 3948129/262144)=0;--------(6)
Realistic
          ((tμν)6 -  491/64 t4 μν + 4338/4096  t2μν – 3948129/262144)=0-------(7)
± 9/4
Imaginary
             (S2 μν + 81/16)* (S2 μν  + 25/16)* (S2 μν + 1/16)---------(5a)
    ((Sμν)6 + 107/16S4 μν +2132/256 S2μν + 2025/(16*16*16))=0;------(6a)
Realistic
        ((tμν)6 - 107/16 t4 μν + 2132/256 t2μν - 2025/(16*16*16))=0;----(7a)

  ±17/3
Imaginary
             (S2 μν + 289/64)* (S2μν  + 81/64)* (S2μν + 1/64)---------(5b)
    ((Sμν)6 + 371/64 S4 μν + 23779/256 S2μν + 23409/(64*64*64))=0;--------(6b)
Realistic
              ((tμν)6 - 971/64 t4 μν + 23779/256 t2μν - 23409/(64*64*64))=0;---(7b)
SPIN ( ±23/8, ±11/4,  ±21/8)
±23/8
 Imaginary
       (S2 μν + 529/64)* (S2μν  + 225/64)* (S2μν + 49/64)---------------(5)
    ((Sμν)6 + 803/64 S4 μν + 155971/256 S2μν + 119025x49 / (64*64*64))=0;----(6)
Realistic
           ((tμν)6 - 803/64 t4 μν + 155971/256 t2μν - 5832225/(64*64*64))=0;---(7)
±11/4
Imaginary
      (S2 μν + 121/16)* (S2μν  + 49/16)* (S2μν + 9/16)---------------(5a)
    ((Sμν)6 + 179/16 S4 μν + 7459 / 256 S2μν + 53361 / (16*16*16))=0;----(6a)
Realistic
          ((tμν)6 - 174/16 t4 μν + 7459 / 256 t2μν - 53361/(16*16*16))=0;------(7a)
±21/8
Imaginary
  (S2 μν + 441/64)* (S2μν  + 169/64)* (S2μν + 25/64)---------------(5b)
 ((Sμν)6 + 635/64 S4 μν + 89479 / 4096 S2μν + 74529x25 / (64*64*64))=0;---(6b)
Realistic
     ((tμν)6 - 635/64 t4 μν + 89479 /4096 t2μν - 1863225/(64*64*64))=0;------(7b)
SPIN   (  ±27/8,   ±13/4,  ±25/8)  
±27/8
Imaginary
      (S2 μν + 276/64)* (S2μν  + 196/64)* (S2μν + 121/64)*( S2μν + 9/64)------(5)
                   (Sμν)8 + 602/64 S6 μν + 116545 / 4096 S4μν
                               + 75464882 / (643) S2μν +    58910544/644=0;-----------(6)
Realistic
                             (tμν)8 - 602/64 t6 μν + 116545 / 4096 t4μν
                               - 75464882 / (643) t2μν + 58910544/644=0;-----------(7)
±13/4
Imaginary
        (S2 μν + 169/16)* (S2μν  + 81/16)* (S2μν + 25/16)*( S2μν + 1/16)------(5a)
                                   (Sμν)8 + 276/16 S6 μν + 20214 / 256 S4μν
                               + 6250 / (163) S2μν + 342225 / 164=0;-----------(6a)
Realistic
                                  (tμν)8 – 276/16 t6 μν + 20214 / 162 t4μν
                               - 6250 / (163) t2μν + 342225 /16= 0;-----------(7a)
±25/8
Imaginary
          (S2 μν + 625 /64)* (S2μν + 289/64)*(S2μν + 81/64)*(S2μν + 1/64)------(5a)
                                   (Sμν)8 + 996/64 S6 μν + 255654 / 642 S4μν
                               + 14885284 / (643) S2μν + 14630625 / 644 = 0;-----------(6a)
Realistic
                                 (tμν)8 - 996/64 t6 μν + 255654 / 642 t4μν
                               - 14885284 / (643) t2μν + 14630625 / 64= 0;---------(7a)

SPIN (±31/8, ±15/4,±27/8)
±31/8
Imaginary
    (S2 μν + 961 /64)* (S2μν + 529/64)*(S2μν + 225/64)*(S2μν + 49/64) Sμν -----(5)
                 i.e.  Sμν [(Sμν)8 + 1764/64 S6 μν + 4605654 / 642 S4μν
                               + 20513570 / (643) S2μν + 5604768225 / 644] = 0;------(6)
Realistic
            ±i.tμν [(tμν)8 - 1764/64 t6 μν + 4605654 / 642 t4μν
                               - 20513570 / (643) t2μν + 5604768225 / 644] = 0;------(7)
±15/4
Imaginary
    (S2 μν + 225 /16)* (S2μν + 121/16)*(S2μν + 49/16)*(S2μν + 9/16) Sμν  -----(5a)
                i.e.   Sμν [(Sμν)8 + 404/16 S6 μν + 477348 / 162 S4μν
                               + 3104912 / (163) S2μν + 12006225 / 164] = 0;------(6a)
Realistic
                    ±i.tμν [(tμν)8 - 404/16 t6 μν + 47734 / 162 t4μν
                           - 3104912 / (163) t2μν + 12006225 / 164] = 0;------(7a)
±29/8
Imaginary
   (S2 μν + 841 /64)* (S2μν + 441/64)*(S2μν +169/64)*(S2μν + 25/64) Sμν  -----(5b)
       i.e.   Sμν [(Sμν)8 + 1476/64 S6 μν + 623814 / 642 S4μν
                               + 77367364 / (643) S2μν + 1566972225 / 644] = 0;------(6b)
Realistic
               ±i.tμν [(tμν)8 – 1476 /64 t6 μν + 623814 / 642 t4μν
                        - 77367364 / (643) t2μν + 1566972225 / 644] = 0;------(7b)
Conclusions
        The tμν = i Sμν yields the realistic and as well the imaginary quantum numbers for the spins ±1/8 to spin ±31/8 entities to explicitly presented above. 

ACKNOWLEDGMENT
                         The author is fully expressive of his gratitude to Late Professor K. R. Rao D.Sc. (Madras) D.Sc. (London), whose D.Sc. Thesis of Madras University submitted in 1927, was an inspiration to formulate the New Spin considerations of the present paper as they describe the possible fractional integral spins for ±1/8 to spin ±31/8 entities.
REFERENCES                                                                                                
A. Indian Science Congress, Physical Sciences Session, 2015 at Mumbai University, Physics Department, 
      at 2h30mPM, on 5th January, 2015.  
1.     Antigravity-like event competes marvelling with the visible Universe yet times!”  Visakhapatnam City Observation of a possible DARK Matter Event. What  constitutes  the  observed  Dark  Matter  visible brilliance  of  light  by  the  present  author,   on  that  fateful  evening  of  rain  and  thunder  shower  that  lashed  almost  one  and  half hours  at  the  outskirts of  Visakhapatnam  city![Ref. No.18a].  On  August 14 , 2011, trusciencetrutechnology@blogspot.com, published,  Saturday,  August 18,  2012  the  observation  of   up-going  positron,   in  the flash  lightning  at  Visakhapatnam photographed  luckily by the  author,  fol lowed  by  a  mild  earthquake  in  that  region  of observation  supports  the  idea  that  they  could  be  colliding particles of  Dark Matter.  The lightning  was very  furious during the  actual   Earth  tremors  happening  seen  brilliantly  in Visakhapatnam  near  the  Bus  stand  area  of  Gajuvaka.  A photograph  of  the  observed  lightning  has  already  been published  by  the present  author  in  a previous  publication of  the  trusciencetrutechnology@blogspot.com. It  is  probably  a  wild  wind  of  radiation  from  the Earth’ s  tremor!   I   quote  that  “I   don’ t  think  it  makes  you  believe  it  must be  Dark  Matter,   nor do  I   think  it makes  you  believe  it  cannot  be”  a  remark  of  particle  theorist  from New  York  University,   report  published  in  Phys.  Review Lett. on Friday!   Whether  the  emitted  positrons  are  an astonishing  and  puzzling  signals  of  the  Dark  Matter observed,   photographed  by  the  present  author  and reviewed  in  a previous publication of  this BlogSpot! . Refer: trusciencetrutechnology@blogspot.com, Prof K Lakshmi Narayana, Visakhapatnam.
2.      The author has the pleasure to bring out the significant work on the discovery, observation and analysis of Anti-Photon. It is fortuitous observation by the author on the eve of 14 August 2013 at a place near Visakhapatnam. See the Book on Anti-Photon by the present author.
3.    PHYSICS SECTION.  ISCA 2013 held in Kolkata Jan 3 to 7, 2013.  “Analysis of the Thunderbolt Lightning at Visakhapatnam during the onset of a mild Earth Tremor on 14 August”:  Author: Professor Dr Kotcherlakota Lakshmi Narayana, {Retd. Prof. of Phys, SU} 17-11-10, Narasimha Ashram, Official Colony,  Maharanipeta. P. O, Visakhapatnam-530002. Mobile No: 9491902867. trusciencetrutechnology@blogspot.com,   Volume 2015, Issue No.7, July 23rd, 2015, Time: 7h00m A.M.

      ISCA 2016 ON 5 January 2016 between 3 to 6  PM.
                           PHYSICS DEPARTMENT








A Special note:
                     One person from Netherlands visited the Mathematics Displays at Mathematics Department and I found him interested in my Paper entitled "GALACTIC GRAVITON INTERACTION WITH DARK ENTITY" by Professor Dr. K. L. Narayana, trusciencetrutechnology@blogspot.comGiven to ISCA, MYSURE UNIVERSITY, 2016 January 3rd to 8th, MATHEMATICS SECTION. I presume, he is M. K. Richardson, Leiden University. I am grateful to him for the visit on 5 Jan 2016 around 3.30 PM on 5 Jan 2016. 

  ACKNOWLEDGEMENT
                                   The author is deeply indebted to Late Prof. K. R. Rao,
D.Sc. (Madras) D.Sc. (London) for his interest and encouragement to publish the articles for the benefit world intellectual readers and the academicians. 

No comments: